
REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-03- 
PubBc raswting burden for Us K>llection of information is estimated to average 1 hour per response. Including tm time for revievwn 
needed, aid comi^etii^ and revlewirn B* K«ectlon Of Informafcn. Send comments cesprdlng ttils burden estimate or any other i 
burden to Washington Headquarters Sersflces, Orertorate for InfwmaBon Operations arid Rspoits, -".215 Jeffeison Davis Hlahveav 
Budget. Paperwork Reduction ftojeet (0704-0188), Washington. DC 20503 *> »      i 

a^i^^ ttiedala 
his 
rtand 

1. AGENCY USE ONLY (Leave blank) 2, REPORT DATE 
February  19,   2003 

4. TITLE AND SUBTITLE 

Nonlinear Wave Propagation 

3. REPORT TYPE AND DATES COVERED 
Final Report  1/12/99 - 30/11/02 

6. AUTHOR(S) 

Mark J. Ablowitz 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Department of Applied Mathematics 
University of Colorado 
Campus Box 526 
Boulder, CO 80309-0526 

9. SPONSORING / MONITORING AGENCY NAME{S) AND ADDRESS(ES) 

Arje Nachman 
Program Director, Physical Mathematics 
AFOSR/NM 
801 N. Randolph St. Room 732 
Arlington, VA 22203-1977 

5. FUNDING NUMBERS 

F49620-00-1-0031 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

153-1989 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

20030513 062 
12a. DISTRIBUTION / AVAILABILITY STATEMENT 

•'■'■nA 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 Words) 
Research investigations involving the nonlinear wave propagation that arise in physically significant systems have been carried out. 
Applications include modeling and computational studies of wave phenomena in nonlinear optics, solutions of physically significant 
nonlinear equations, chaotic wave dynamics in physical systems and inverse scattering. There have been a number of important research 
contributions. During the past three years 19 papers were published or accepted for publication in refereed journals, 4 book chapters 
were published or accepted, and 14 invited lectures were given. New methods to find solutions to discrete equations in a nonlinear 
optical fiber array were discovered. Discrete diffraction managed systems and associated solitons were proposed. This work is relevant 
to recent experiments involving discrete optical waveguides. Experimental arrays occupy 5 microns in width and a total length of 2-5 
millimeters. From first principles, the equations governing discrete systems in nonlinear optical arrays as well as discrete diffraction 
managed systems have been derived. The concept of dispersion management is being applied to the study of ultra-short teer pulse 
dynamics in Ti:sapphire lasers. In quadratic nonlinear optical media, a vector system of nonlinear Schrodinger (NLS) type with 
coupling to a mean field has been derived. It has been established that a universal type of chaotic wave dynamics can develop in 
physical sand computational systems. Parameter regimes have been delineated where chaotic dynamics are predicted and observed. 
Such chaotic dynamics has been shown to arise in computational chaos, water waves and short pulses in nonlinear optical fibers. A 
class of free boundary problems has been investigated. New classes of localized solutions to multidimensional nonlinear wave 
problems have been obtained and analyzed. 

14. SUBJECT TERMS 
nonlinear wave propagation 

15, NUMBER OF PAGES 
14 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

20, LIMITATION OF ABSTRACT 

NSN 7540-fl1-280-5500 Standard Fomi 298 (Rev. 2-89) 
Prescribed by MISI Std. 239-18 
a8-102 



Nonlinear Wave Propagation 

AFOSR Grant/Contract # F49620-00-1-0031 

Final Report 
1 December 1999 - 30 November 2002 

February 19, 2003 

Mark J. Ablowitz 

Department of Applied Mathematics 
University of Colorado 

Boulder, CO 80309-0526 

Phone: 303-492-5502 Fax: 303-492-4066 
email address: markjab@colorado.edu 

OBJECTIVES 

To carry out fundamental and wide ranging research investigations involving the non- 

linear wave propagation that arise in physically significant systems. Applications include 

modelling and computational studies of wave phenomena in nonlinear optics, solutions of 

physically significant nonhnear equations, chaotic wave dynamics in physical systems and 
inverse scattering. 

STATUS OF EFFORT 

The research program of the PI in the field of nonlinear wave propagation is broadly based 

and very active. There have been a number of important research contributions during the 

past three years. During the period 1 December, 1999 - 30 November, 2002,19 papers were 

published or accepted for publication in refereed journals, 4 book chapters were published or 

accepted, and 14 invited lectures were given. Some of the key results and research directions 

are described below in the section on accompUshments/new findings. Pull details can be 
found in our research papers. 



ACCOMPLISHMENTS/NEW FINDINGS 

Nonlinear Optics in Waveguide Arrays . 

In recent years there has been important experimental research involving optical waveg- 

uide arrays and the propagation of their nonlinear modes. Discrete optical waveguide arrays 

with 40-60 individual waveguides each occupying 5 microns in width and a total length of 2-5 

millimeters can now be constructed. Such small scale structures can potentially be embed- 

ded in a large scale environment and can be used to guide Hght in a controllable manner. In 

our research the governing equations, which are semi-discrete nonlinear evolution equations, 

are derived and solutions to these equations are constructed and analyzed. 

Motivated by these experiments we have undertaken wide ranging studies of discrete 

scalar and vector nonHnear Schrodinger (NLS) systems. In general, it is diificult to find 

solutions to discrete equations. New and effective methods have been developed in the 

Fourier domain to find localized and stationary and traveling wave pulse solutions to the 

governing discrete equations. The methods are robust and apply to a variety of equations; 

there is no need for the equations to be integrable. Tfraveling wave solutions pose certain 

difficulties. Unlike the continuous problem, in general one does not expect to be able to find 

discrete "uniformly" traveling soHton wave modes. But over the short scales involved we 

find that approximate traveling optical pulses can be obtained; they persist and are stable 
over the experimental distance. 

We have applied the above analysis to a waveguide array which is a discrete diffraction 

managed system. The concept of diffraction management means that the waveguide array 

is alternately directed "positively" and "negatively" as a function of waveguide number over 

the propagation distance of the fiber. Using discrete Fourier methods we have obtained a 

nonlocal integral equation which governs the wave propagation in the discrete system and 

have found a claas of discrete diffraction managed soHtons as special solutions of this system. 

The theory has also been extended to include vector discrete systems and the interaction 
effects of traveling discrete solitons have been analyzed. 

Prom first principles, employing ^ymptotic analysis the equations governing discrete 

systems in nonlinear optical arrays as well as discrete diffraction managed systems have been 

derived. The analysis can be applied to vector systems and new classes of vector discrete 

and discrete diffraction managed pulse solutions have been obtained. The collision process 

of interacting optical pulses has been studied in detail. Recent research has also indicated 

that the integrable discrete scalar NLS (IDNLS) equation can be derived in coupled optical 

arrays. This can have important implications in physics since the IDNLS system admits 
traveling wave solitons over wide parameter regimes. 



Recent experimental research has shown that multidimensional discrete waveguide arrays 

can also be fabricated. Future research will investigate how to obtain localized multidimen- 
sional discrete optical pulses structures. 

Discrete waveguide arrays allow us to carefully control and tune hghtwaves. They provide 

us with the ability to navigate light in one and two dimensional networks. Discrete systems 

have superiority over bulk continuum media in the sense that it is easy to identify a path 

for light to propagate, and to readily modify optical pulse interactions in small and confined 
locations. 

Potential applications involve beam management, pulse shaping, optical switching and 
the development of logic devices. 

Nonlinear optics: dispersion management and the study of ultra-short l^er dy- 
namics in Tissapphire lasers 

Research in nonlinear fiber optics has demonstrated that a new class of optical pulses, 

called dispersion managed solitons, and more recently, quasi-linear pulses can be obtained. 

These pulses arise from a transmission line composed of a periodic array of fibers, with 

different dispersion characteristics in each period. Such dispersion managed fibers have 

numerous advantages including sharply reduced inter-channel four wave mixing by-products 
as compared with classical soliton transmission. 

Recent research investigations have shown that ultra short pulses in Ti:sapphire lasers 

are a manifestation of dispersion management. We are actively studying the dynamics of 

these ultra short dispersion managed lasers. The research we have done involving dispersion 

management is proving very useful in the understanding of the dynamics of Ti:sapphire lasers. 
In our research on Ti:sapphire l^ers the goal is to understand the dynamics of the phase of 

the carrier wave relative to that of the envelope. Recent experiments have shown that the 

the phase difference between the envelope and carrier waves can be stabilized. This is an 

important advance in our ability to control and manipulate hghtwaves. The measurement 

of the relative optical phase is important in apphcations. For a lightwave, the envelope 

fimction can provide a reference to measure carrier.phase against. For example, the peak 

of the envelope pulse can be the reference with which to compare the carrier wave. This is 

called the carrier-envelope phase. We are currently developing analysis which can accurately 
predict the evolution of the carrier-envelope ph^e. 

There is currently considerable interest in using ultra short optical pulses in order to 

control and measure both the amplitude and the phase of optical fields. Such control and 

detection can pave the way for significant advances in optical signal processing with ultra 
short optical pulses. 



A unified theory that describes both dispersion managed solitons and qu^i-linear pulses 

in nonhnear fiber communications has been developed. Quaei-linear pulses are of considerable 

interest in the communications community. Due to their relative simplicity and reception 

advantages at extremely high bit rates, quasi-linear pulses are being proposed as one of the 

main communications formats. It turns out that the same fundamental nonfinear equation 

governs both solitons and quasi-linear pulses. In the soliton format nonlinearity balances 

average dispersion. In the quasi-linear format, nonlinearity is reduced, or "managed" by 

properly using fiber design. The main additional parameter in dispersion management is 

the "map strength", s, which is a measure of the strength of the local dispersion. At large 

values of s, with fixed power, we show that the nonlinear terms are reduced by the factor : 
0{logs/s). 

Dispersion management is effective in reducing unwanted inter-channel four wave mixing 

components generated by periodic amplification. However, with large values of map strength 

there is an additional serious penalty that occurs. Namely effects of intra-channel four wave 

mixing become very significant. This results in growth of zero bits (ghost modes), timing 
shifts and significant energy transfers between adjacent bits. We are studying how to alleviate 
such penalties. 

This research is fundamental in the field of optical communications with many important 

applications. As mentioned above the concept of dispersion management applies to the 

dynamics of Ti:sapphire lasers. With the benefits of our research employing dispersion 

management in fiber optics we are in a strong position to make significant contributions to 

the understanding of the ultra short pulse dynamics in Ti:sapphire lasers. We have already 
made some important advances in this study. 

Nonlinear optics: multi-dimensional pulse propagation in x^^^ optical materials 

In many applications the leading nonhnear polarization effect in an optical material is 

quadratic; they are referred to as "x^^'i" materials. We have found that in multidimensional 

nonresonant x^^^ materials, the nonlinear equation governing the slowly varying envelope of 

quasi-monochromatic wave trains is not the NLS equation but rather a coupled nonlinear 

system involving both the optical field and mean terms. We call these equations NLSM 

systems (M stands for the mean contribution). In water waves similar scalar systems were 

derived in 1968 by Benney and Roskes. A few years later, a special case of this system was 

found to be integrable. The latter system is frequently referred to as the Davey-Stewartson 
(DS) system. 

In x^^^ optical materials, we derived both a scalar and more recently a vector NLSM 

system directly from MaxwelFs equations. The vector NLSM systems generalize to multidi- 

mensions the well known H-l vector NLS equations. Such vector multidimensional systems 



are new in mathematical physics; there is no analog in water waves. Investigations of the 

scalar NLSM system has shown that localized optical pulse solutions can be constructed. 

These localized pulses are induced by their interaction with mean terms that have nontrivial 

boundary values. Hence the localized pulses are boundary induced. This situation is similar 

to the situation that is known to occur for the Davey-Stewartson system; however in the 

optics problem the system is not integrable. These indings suggest that stable localized 

multidimensional pulses are a reproducible feature of these NLSM systems. In the future 

we will extend our analysis to spatial nonlinear optics where the boundary behavior can be 
more readily controlled. 

Potential applications using such pulses include beam steering, pulse shaping, terahertz 

imaging, spatio-temporal hght bullets and optical switching. 

Chaotic wave dynamics—a universal phenomena in nonlinear wave systems 

Our earlier research in computational chaos has motivated our studies of chaotic wave 

dynamics in physical problems. In both classes of problems the governing asymptotic equa- 

tions are the NLS equation with suitable small perturbations representing the higher order 

terms. Such perturbed NLS equations are well known in the study of deep water waves and 

nonlinear optics. In the water wave problem we have collaborated with experimentalists in 

order to compare theory and experiment. The computational problems associated with the 

discrete NLS eq. (see also the above section on nonlinear optics in waveguide arrays) also 

yield a perturbed NLS eq. when one considers the effects of truncation error. 

In the laboratory investigations carefully controlled modulated waves are excited at the 

entrance of the wave tank. Measurements are taken at downstream locations. The data 

received are then compared with identical experiments conducted at subsequent times. It was 

found that in the case of solitons, the results are reproducible. Namely different "identical" 

experiments (there is approx. 1% error between identical experiments) yield soliton waves 

with essentially the same amplitude and speed. On the other hand when the waves are 

excited in a periodically modulated manner, corresponding to three unstable modes of the 

underlying NLS equation, it is found that there are serious discrepancies between the data 

sets at downstream positions. The discrepancies are magnified as one proceeds downstream. 

In our research we have developed an analytical/numerical framework which describes 

and explains this phenomena. The NLS equation with suitable small higher order corrections 

is the relevant equation. We call this the PNLS equation (P stands for perturbed). With 

appropriate parameters, the simplest periodically generated waves of the NLS equation are 

unstable. The instability is associated with M unstable modes of the linearized version 

of the NLS equation. The value of M, an integer plays an important role in the theory. 

The PNLS equation is used to compute the long time evolution.   Our results based on 



direct numerical simulations of the PNLS equation with periodic boundary values and the 

numerical integration of the spectrum of the scattering problem associated with the 1ST 

solution of the NLS equation agree with the experimental observations. 

Recently we have completed a study of modulational instability in nonlinear fiber optics. 

We find that for typical parameters, a similar scenario arises. The modulational instability 

produces wave growth which saturates in the nonlinear regime. The final state manifests 

itself as chaotic nonreproducible dynamics. In more detail it is found that traveling waves are 

excited which evolve chaotically between left to right running directions. We also considered 

another parameter regime where damping is important and amplifiers are introduced into 

the system. Once again the same type of chaotic dynamics is found. 

Thus, we find that the chaotic dynamics which arises in physical systems governed by 

perturbed NLS equations with periodic boundary values have certain universal features. 

The scenario is described by left/right traveling waves which evolve chaotically across a 

fixed state. Since the NLS equation is a widely applicable equation, this research has many 

applications including nonlinear optics, fluid dynamics, plasma physics etc. 

In our research on computational chaos a class of discrete equations which in the con- 

tinuous limit are approximations to nonlinear Schrodinger equations (NLS), both scalar 

and vector and the sine-Gordon equation are investigated. These equations are physically 

interesting systems whose solutions and properties we have concrete analytical understand- 

ing. The discrete equations provide a vehicle by which: i) computational schemes can be 

compared and ii) errors in the schemes can be detected. We have found that in certain 

circumstances computationally irregular/chaotic temporal dynamics result. Since these are 

long time numerical integrations of nonlinear systems, there is no existing theory of error 
analysis which describes the phenomena. 

For example we studied computational chaos associated with the discrete NLS equation 

with periodic boundary values. The discrete NLS eq. is a numerical scheme associated with 

the NLS eq. where the truncation error leads to a perturbed NLS eq. Thus, as with the 

physical problems described earlier, the study involves understanding the long time dynamics 
of the NLS equation under small perturbations. 

As mentioned above, with appropriate parameters, the simplest periodically generated 

waves of the NLS equation are unstable. The instability is associated with M unstable 

modes of the linearized version of the NLS equation. The NLS eq. with small perturbations, 

due to the discretization, governs the long time evolution. Our computational results, shows 

that evolution near certain special parameter regimes, referred to as homoclinic manifolds, 

is highly unstable. Small perturbations due to numerical errors (or physical perturbations 

as discussed above) induce waves which evolve chaotically between left and right traveling 



states across a fixed state. It is this same scenario which is also seen in physical phenomena 
such as discussed above for water waves and optics. 

Depending on values of the parameters, in particular the number of unstable modes M, we 

have demonstrated that: computational chaos can result from truncation errore, or even from 

roundoff errors. We have also found that the spatial discretization plays a more important 

role than the temporal scheme for these nonlinear systems. Different spatial discretizations 

yield significantly different results. We find that "off the shelf" adaptive Runge-Kutta (RK) 

type algorithms (e.g. from standard libraries) perform about as well ^ symplectic integra- 

tors. The symplectic integrators performed better when they were higher order with fourth 

order symplectic algorithms performing about as well as RK algorithms. Further research 

is needed to decide whether symplectic integrators can be as useful for the integration of 

infinite dimensional Hamiltonian systems as they are for finite (low) dimensional dynamical 
systems. 

Free boundary problems in nonlinear wave systems 

Free boundary problems (FBP) arise widely in physical phenomena. They are impor- 

tant but usually are difllcult problems to solve. FVom the mathematical point of view, the 

underlying complication of FBP involves not only solving the given partial differential equa- 

tions, but also finding the unknown motion of the free boundary. Physically speaking, FBP 

arise in numerous contexts, e.g. surface dynamics of water waves, the internal evolution 

of the boundary between immiscible liquids, the motion of the free boundary between two 

energetically differing states such as those referred to as Stefan problems etc. The inherent 

difficulty in most FBP is that they require one to solve a nonlinear system. In some cases it 

is possible to prove existence theorems (at least for short time) but usually explicit solutions 

cannot be obtained. Recently in our research investigations a one-phase Stefan problem for 

the Burgers equation w^ considered. An exact travehng wave solution was obtained and 
the existence of the one-phase solution was proven for short intervals of time. 

More recently, in the context of Burgers equation, we considered a more complicated 

two-phase FBP. The fundamental theory was constructed and exact free boundary solutions 

were obtained. The free boundary problem that we studied, corresponds to a one dimen- 

sional, nonstationary fiow with two weakly nonlinear compressible fluids. We assume the 

two fluids to be immiscible, with different velocity fields and different viscosities, connected 

by continuity of velocity and a suitable energy balance condition at the free boundary. Due 

to the fact that Burgers equation can be linearized to the heat equation, we have a natural 

correspondence with the well known Stefan problem of the heat equation. For this reason 

we call this free boundary problem a Burgers-Stefan (B-S) problem. 



Currently we are considering a class of discrete free boundary systems. In the discrete 

case we have considered a free boundary problem associated with the linear discrete diffusion 

equation and have obtained an equation governing the nonlinear free boundary. The study 

of discrete free boundary problems appears to be novel in mathematics and physics. 

Solutions of Multidimensional Nonlinear Wave Equations 

We have continued our studies of a class of multidimensional nonlinear wave equations. 

In our earlier work an important special class of solutions, namely two dimensional lumps 

which are solitons/coherent structures which decay in all directions was obtained. 

We have extended the previous theory and have found a new class of lump type solutions 

to a 2+1 generalization of the Korteweg-deVries equation, called the Kadomtsev-Petvi^hvili 

(KP) equation. Associated with the KP equation is a Hnear scattering problem which in this 

case is the nonstationary Schrodinger equation. Lump type solutions of the KP equations 

correspond to reflectionless potentials of the the nonstationary Schrodinger problem. We 

have also found solutions of the nonstationary Schrodinger equation corresponding to these 

potentials. Given the importance of the nonstationary Schrodinger equation, this work has 

two equally important themes: solutions of the KP equation and solutions of the nonsta- 
tionary Schrodinger equation. 

Spectrally speaking, these new localized solutions correspond to multiple poles associated 

with certain eigenfunctions of the nonstationary Schrodinger problem. We have found that 

these solutions are characterized by an integer, called the charge. The charge is related to a 
winding number, or index. 

The simplest new solution is explained as follows. In the the usual spectral description 

of, say, a one lump solution, the scattering eigenfunction has one pair of poles symmetrically 

located in the upper/lower half planes. The charge associated with a simple lump is unity. 

In the case of a standard two lump solution, the eigenfunction has two pairs of poles sym- 

metrically located in the upper/lower half planes. A two lump solution has an overall index 

of two obtained by simply adding the individual indices of each lump. We have shown, both 

by taking coalescing limits of (two) lump solutions and by direct analysis of the scattering 

problem, that the spectral configuration h^ a double pole in one of the half planes and a 

simple pole in the other. This new state has charge two, which is consistent with the fact 
that in the limit process one cannot lose "charge". 

This process carries on to higher order multipole lumps. We have obtained a number of 
important results which are summarized below. 

i) The multipole lump solutions are associated with an integer, referred to as the charge. 

Thus we have found a new underlying integer associated with the nonstationary Schrodinger 



problem. Simple lumps have unit charge. Higher order lump type solutions can have any 
integer charge. 

ii) The solutions of the nonstationary Schrodinger equation have multiple poles. The poles 

can have different orders in the upper/lower half planes. Our previously known solutions 

had only simple poles. The solution manifold is characterized by the order of the poles of 

the nonstationary Schrodinger equation and the charge. 

iii) The solutions and dynamics of the multipole lump solutions associated with the 

Kadomtsev-Petviashvili equation have more complicated interaction properties than the sim- 
ple lump solutions. 

We have continued our investigations of the scattering theory associated with a class of 

multidimensional operators and are also considering the lump solutions of other physically 

significant 2+1 dimensional equations such as the Davey-Stewartson equation; We have 
made considerable progress. 

This work is important for anyone studying scattering theory in multidimensions as well 

as nonlinear wave equations possessing multidimensional solitons. The underlying wave 

equations arise frequently in application as does the associated direct and inverse scattering 
problems. 
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